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Using a simplified wave-diagram and the gas-speed/sound-speed diagram, it is 
shown how the oscillations start and grow within a resonance tube. It is found 
that the oscillation amplitude tends to a limiting value which is obtained when 
the jet is fully swallowed by the tube during the phase of compression of the 
cycle. Experiments are carried out for jet Mach numbers from 0.1 up to 2. To 
achieve an adequate evacuation of the tube in the expansion phase, a thin 
cylindrical body must be used, which is laid along the axis of the jet to produce a, 
wake and a correlative local deficiency of the kinetic energy of the jet. Measured 
amplitudes of pressure fluctuations are in good agreement with theoretical 
values. 

1. Introduction 
Hartmann (1919) has discovered that strong oscillations can be produced in a, 

cavity facing a supersonic under-expanded jet. He found that oscillations only 
occur when the cavity mouth is placed a t  certain locations of the periodic struc- 
ture of the jet. Since then, numerous investigators have studied this interesting 
unsteady flow phenomenon. 

It was found by Savory (1950) and Hartmann & Trudso (1951) that, when the 
resonator cavity is supported by a stem passing through the nozzle and lying 
along its axis, oscillations may still occur when the jet is slightly subsonic. 
Sprenger (1954) was able to obtain an oscillating flow with jet Mach numbers as 
low as 0.52 by placing a thin nylon thread ( em diameter) across the jet axis. 
Vrebalovich (1962) observed oscillations in a cavity placed in a subsonic or 
supersonic flow field by putting a ring trip or a wing trip upstream of the tube 
mouth. 

Brocher & Maresca ( 1 9 6 9 ~ )  suggested that the main condition to obtain flow 
oscillations within a cavity facing a subsonic jet or exposed in a subsonic gas flow, 
is to decrease the energy of the jet in the neighbourhood of its axis in order to 
act upon the radial pressure distribution at  the cavity entrance. This is confirmed 
by experiments carried out with a thin cylinder placed axially in the jet nozzle 
which produces a wake in the centre of the jet. The same authors (1969b) were 
also able to predict both the maximum amplitude and the frequency of the 
oscillations for low jet Mach numbers. Brocher, Maresca & Husson (1969) 
extended the analysis to higher subsonic jet Mach numbers and good agreement 
was found between theory and experiments. 
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The purpose of the present paper is to review the most important results 
already achieved by the authors, also to extend the analysis to the case of a 
supersonic correctly expanded jet, and to estimate the effect of the increase in 
temperature of the tube (Sprenger 1954) on the oscillation amplitude. Also the 
need for decreasing the energy of the jet on its axis to initiate and sustain the 
oscillation will be clearly demonstrated in the gas-speed/sound-speed diagram. 
It is shown experimentally that the ‘ wake-producing’ cylinder, laid down along 
the jet axis, achieves oscillation amplitudes that are in good agreement with the 
theoretical predictions over the whole range of jet Mach numbers tested (0.1-2.0). 

2. Oscillations mechanism 
For the investigation of unsteady flows, it is customary to use two diagrams: 

(a)  the wave diagram; ( b )  the gas-speedlsound-speed diagram. 
Most of the previous investigators have represented the wave processes of the 

resonance tube, using the wave diagram only. Others, such as Thompson (1964) 
and Manning (1968) recognized the interest of representing the processes in the 
second diagram. The authors (1969) have shown that the latter enables one to 
demonstrate how the oscillation may start and grow to a definite limiting value. 

FIGURE 1. Flow phases in a resonance tube. (a )  First phase: penetration of the jet into the 
tube. ( b )  Second phase: evacuation of the tube. 

First, it should be recalled that the flow in a resonance tube may be divided 
into two phases; in the first phase, the jet penetrates into the tube and compresses 
the gas contained therein; in the second phase, the gas compressed in the tube 
expands to the atmosphere and the jet is deviated laterally (figure 1). A simplified 
wave diagram of the process in the resonance tube is represented in figure 2. It 
consists essentially in a compression wave, a reflected compression wave, an 
expansion wave and a reflected expansion wave. Also shown in the figure is the 
entropy line or contact front, between the gas of the jet and the gas contained in 
the cavity. The following simplifications are made to investigate the mechanism 
of the oscillations: 

(i) Viscous effects are neglected. This approximation is good when the 
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Reynolds number based on the tube diameter andon the jet velocity, is sufficiently 
high and/or when the tube lengthltube diameter ratio is not too large. 

(ii) Compression waves are considered as isentropic. This hypothesis is good 
for jet Mach numbers Hj, up t o  about 1. For higher jet Mach numbers, it is also 
applicable if the compression waves do not have time to coalesce to form a shock 
wave, that is, for relatively small tube length. 

(iii) Wave reflexions on the contact front are neglected. This approximation is 
good for Xj up to about 1.3, if the tube is cooled to compensate for the heating 
effects due to irreversibilities. 

(iv) Wave bundles are replaced by single waves. For the wave diagram and the 
detailed configuration of the oscillations, this is a rather crude approximation. 
But, to describe the phenomena, it is a very convenient simplification and it 
turns out to give fairly accurate results for the oscillation amplitude. 

(v) The flow in the jet is quasi-steady. As indicated above, the flow in a 
resonance tube comprises essentially two phases: a compression phase and an 
expansion phase. The flow in the jet may be considered as steady, during each of 
these phases, if the switching time from one phase to the other is short compared 
to the period of oscillation. This condition will be met when the length/diameter 
ratio of the tube is sufficiently large. 

With these hypotheses, it is possible to describe quite clearly in the gas-speed/ 
sound-speed diagram how the oscillations start and grow in the resonance tube. 

The flow in the jet being considered as quasi-steady, the conservation of energy 
may be written as 

a ; + F U 3  7-1 2 -  -a,, 2 

where a3 and u3 are respectively the sound speed and the gas speed in the jet 
penetrating into the tube (region 3 of figure 2), a, the stagnation-point sound 
speed of the jet and y the specific heat ratio. Equation (1) represents an ellipse 
in the a, u plane and may be called ‘ellipse of energy’. 

In the resonance tube the flow is unsteady. Since it is considered as isentropic, 
the Rieman invariants 

(2) ~ a & u = constant 

may be used. In the a, u plane, (2) represents straight lines, the slopes of which 
are 

2 

Y - 1  

da -7-1 
- = +- 
du 2 -  (3) 

In  order to simplify the drawing, it is convenient to introduce the following 
non-dimensional co-ordinates 

In the A ,  U plane, (1) becomes 
0 
.G 

A;+-- u;= 1 ,  
Y - 1  

(4) 
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which is again an ellipse, and (2) becomes 
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A -I U = constant, ( 5 )  

which is the equation of straight lines, the slopes of which are T 1. It may be 
shown that there exists a simple relation between the speed of sound of the jet 

Distance - 
FIGURE 2. Wave diagram of the resonance tube. i.c.w., incident compression wave; 
r.c.w., reflected compression wave ; i.e.w., incident expansion wave; r.e.w., reflected 
expansion wave; c.f., contact front. 

penetrating into the tube and that of the gas on the other side of the contact front 
(region 2 in figure 2 ) .  Since the flow in the jet is isentropic, one has, at  any cycle n, 

where a3n andp,, are respectively the pressure and the sound speed in the region 3 
and p,, is the total pressure of the jet. If the flow is isentropic, one has for the 
sound speed in region 2 ,  after any number n of cycles 

where a,, and pZ0 are respectively the speed of sound and the pressure of the gas 
filling the cavity before the oscillations start. For uz0 andpz, the following remarks 
apply. In most casesp,, will be equal to the surrounding pressure. Moreover, it  is 
known (Sprenger 1954) that thermal effects occur in resonance tubes. This is due 



Flztid dynamics of the resonance tube 373 

to the friction on the walls and to irreversibilities in shocks. Indeed, although 
the irreversible heat produced at each cycle may be small compared to the energy 
of the jet, the cumulative effect of such irreversibilities may be important. It is 
experimentally observed that the temperature of the tube increases and levels 
off to some value. The thermal effects grow as the jet Mach number increases. To 
take them into account it will be here assumed that the flow is isentropic at each 
cycle but that the temperature level of the cavity may be higher than the sur- 
rounding temperature. In  other words, it  is assumed that the tube has been 
heated up at its final equilibrium temperature before the oscillations start; with 
this assumption, a20 in (7)  will be the speed of sound of the gas at a suitable mean 
temperature of the tube walls. 

The speeds of sound a,n and a3n are then related by 

Noting that p2n = p3n across the contact front, then 

where CI. is the temperature ratio T0/T,,. If no thermal effect were present and the 
total temperature of the jet were equal to the ambient temperature, a would 
be equal to unity. 7~ is the pressure ratio p0/p2,  of the jet and determines the jet 
Mach number. Combining (4) and (8) and noting that U3n = U2% across the 
contact front, we obtain 

2 
(9) U ~ - ( Y - U / Y  + - Uirl = 1. 

Y-1 
Hence, in the A ,  U plane, the flow conditions in region 2 of figure 2 are located 
on the ellipse E, given by (9)) which is a similar transformation of the energy- 
ellipse of the jet E,. It is now possible to describe how the oscillations start and 
may grow in a resonance tube. Let it be supposed that the mouth of the tube is 
closed by a plate. The flow configuration will then be that of stagnation point 
flow on a plate with its centre on the axis of the jet. Hence, the pressure around 
the axis will be higher than the surrounding pressure. If the plate is suddenly 
removed, the jet will produce a compression wave in the tube which was filled 
with gas at  the surrounding pressure. In  the A ,  U plane (figure 3)) this compres- 
sion wave, considered as isentropic, goes from the point l1 (U = 0 ;  A,, = a-4)) 
with the slope + 1; the intersection point 2l of this wave with the ellipse E, gives 
the flow conditions in the region 2 during the first cycle. The flow conditions of 
the jet penetrating the cavity are given by the point 3l. 

The compression wave is then reflected by the end wall of the tube. This 
reflected wave is represented by two straight lines with slope - 1, one starting 
from point 21 for the gas that was initially in the tube and the other from point 31, 
for the gas of the jet that penetrated into the tube. The boundary condition at  
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the wall being U = 0, the flow conditions in regions 4 and 5 are given by the 
intersection of these lines with the axis U = 0 (points 4l and 5l). When the re- 
flected compression wave reaches the tube mouth, it pushes the jet backwards and 
by doing so, it  allows the tube to empty. The compression wave will be reflected 
as an expansion wave at  the mouth. This expansion wave is a straight line with 
slope + 1. The crucial point is now to determine how far down the pressure will 
decrease behind this wave. Obviously, the gas coming out of the cavity has to 

A 
I 5' 

FIGURE 3. Gas-speed/sound-speed diagram ( U  +(y- 1) u/a,, A a/a,). E,, energy- 
ellipse of the jet; E,, locus of flow conditions in region 2 .  

have a total pressure a t  least equal to the total head of the jet in order to push it 
backwards. At the point 4l, the total head of the gas is higher than that of the jet 
but the unsteady expansion reduces this total head. It is easy to see that when 
this gas has been brought to the state 6l, its total head will just be equal to the 
total head of the jet; indeed a t  point 6l the static pressure and the Mach number 
are the same as at point 3l which is on the energy ellipse E3. Hence the expansion 
wave will bring the gas coming out of the cavity to the point 6l. The corresponding 
state of the gas contained initially in the tube will be given by the point 71 and 
the reflected expansion wave will bring this gas back to the starting point 11. It 
follows that the cycle will repeat itself and that the amplitude of the pressure 
fluctuations will remain constant with time. I n  experiments of course, friction 
and other irreversibilities will act as a damping force and the pressure fluctuations 
will die out as indicated schematically on figure 4. The final conditions in the 
tube will be given by the intersection of ellipse E, with the axis U = 0, that is, 
the tube will be filled at a pressure equal to the total head of the jet. In  order to 
amplify the fluctuations, it is therefore necessary t o  have some mean to help 
the tube emptying to a lower pressure. 

During the expansion phase of the cycle the flow configuration is that of two 
jets with the same total head (neglecting viscous losses) flowing coaxially against 
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each other. If, as was proposed by Brocher & Maresca (1969a, b) ,  a cylindrical rod 
is inserted along the axis of the jet nozzle, the total head of the jet coming out of 
the nozzle will be reduced around the axis and, in this region, will be smaller than 
the total head of the flow coming out of the tube. Consequently, this flow will be 
able to push the jet farther back, especially around the axis. In  order to investigate 
the effect of a rod on the pressure distribution at the entrance of the tube, 
experiments have been carried out with the entrance of the tube closed by a plate. 
The measured pressure distributions on the plate with and without a rod are 
shown on figure 5. It is seen that a thin cylinder is sufficient to modify the pressure 
distribution in a region much wider than the cylinder diameter. 

"t,. 

FIGURE 4. Case of insufficient evacuation of the tube: the oscillations damp out. 

Hence a thin cylinder is suficient to greatly help the flow coming out of the 
tube push back the jet. The expansion wave will then bring the pressure in the 
tube to a lower level than that corresponding to the points 6l and 7 l  of figure 3. 
In fact, if the jet is pushed back sufficiently far, the flow coming out of the tube is 
that of a free jet and its static pressure is atmospheric. It may therefore be 
assumed that the expansion wave brings the gas to ambient pressure (figure 6). 
In  that case, the expansion wave starting from point 5l with slope + 1 will reach 
the horizontal line A = a d  and the point 7l will be located at  the intersection 
with this line. The expansion wave will be reflected by the end wall of the tube as 
another expansion wave; this wave will bring the gas to rest, that is, to the 
point 12. At this point the pressure is below the ambient pressure and there is a 
suction effect in the tube. The compression wave of the second cycle will be 
stronger than that of the first cycle, and will bring the gas to the point 22.  After 
the passage of the reflected compression wave, the gas will be in the state 32, and 
so on. It is seen that the oscillation amplitude will grow up at  each cycle. As is 
demonstrated in the appendix, the oscillation will tend to the cycle 1-2-5-7-1 
as the number of cycles tends to infinity. Hence, even in the absence of losses the 
oscillation amplitude does not become infinite but grows only to a definite 
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limiting value. It is therefore appropriate to call the cycle 1-2-5-7-1 the ‘limit 
cycle ’. 

It is seen from figure 6 that the speed of sound A ,  behind the incident shock 
decreases at each cycle and tends to the limit value A,. From (7), it follows that 
the pressure behind the incident shock will decrease at each cycle until it is just 

Cvlindrical rod 

Square plate 40 x 40 mm 
FIGURE 5 FIGURE 6 

FIGURE 5. Jet  impinging on a plate: pressure distribution on the plate without and with 
‘wake-producing’ rod. Squared jot  36 x 36 mm. Jet  Mach number: 0.44. A : without rod; 
0 : with rod. 

FIGURE 6 .  Case of evacuation down to surrounding prcssuro : the oscillations grow up until 
fuI1 resonance is reached. 

equal to the surrounding pressure pz0.  Hence, during the starting process of SL 

resonance tube, the tube will gradually empty itself. When the limit cycle is 
reached, the pressure ahead of the incident shock is below atmospheric and is 
exactly such that the jet can be fully swallowed by the tube in the compression 
phase of the cycle. 

It should finally be noted that the ‘ wake-producing ’ device is not only necessary 
during the starting and the growing of the oscillations but also when the limit 
cycle is reached. Indeed, in experiments, the total head of the flow coming out of 
the tube is reduced by irreversibilities (friction, shocks) and the total head of the 
jet has to be decreased in its centre to help the tube emptying, as discussed above. 
This is experimentally confirmed by removing the wake-producing device after 
the limit cycle has been reached: the oscillations immediately damp out. 

3. Limit cycle 
No distinction has been made between subsonic and supersonic jet velocities 

in the description of the starting and growing of the oscillations in a resonance 
tube. It will be seen below that the limit cycle described so far applies, strictly 
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speaking, to subsonic jet velocities only. However, experimental evidence will 
show that certain features of this cycle remain vali? for a correctly expanded 
supersonic jet. 

(a) Xubsonic jet 

Since the point 2 is given by the intersection of the horizontal line A = 

the ellipse E2 (equation (9)), the gas velocity at point 2 is given by 
and 

u, = [&(Y - 1)( 1 - ?r-(r-1)/r)]+. (10) 

The pressure at  point 2 is equal to atmospheric pressure. Since the pressure is the 
same on both sides at  the contact front, one sees that when the limit cycle is 
reached, the static pressure of the jet penetrating in the tube is equal to atmos- 
pheric pressure. Therefore, the speed of the jet penetrating the tube is the same 
as the speed of the jet discharging in the atmosphere and the jet may penetrate 
completely into the tube during the compression phase of the cycle. The pressure 
ratio appearing in (10) may be expressed in terms of the jet Mach number Mj: 

?r(r-l)/r = 1 +I( 2 Y- Wj” 
and the points of the limit cycle are then given by 

A5 = A,,, + Uz. (11) 5: u5 = 0; 

7: u7 = -us; 
1: u, = 0; A1 = - U2. 

A ,  = A ,  = a-4. 

It is now easy to calculate the variation of other physical quantities once the 
limit cycle is reached. For instance, the pressure at the points 5 and 1 is given by 

For a = 1, (12) and (13)  reduce to those previously given by the authors (1969). 
Since the friction on the walls and the shock irreversibilities heat up the tube, 
a will, in general, be smaller than unity. It follows that, according to the simplified 
model presented here, the heating of the tube will tend to decrease the pressure 
amplitude since ~ , / p , ~  will be smaller and pl/p20 larger. It will now be shown 
that (1 l),  (12) and (13)  are valid for Mj < 1, only. Indeed, in the expansion phase 
N, < 1 since the last expansion wave of the expansion bundle gives the condition 
la6\ < a6. One has the relation 

Since the waves are supposed to be isentropic, a6/a7 = a3/a2. Using (S), we get 

M 7 -  - Jl, a+ n-(r-WY. (14) 

(15) 

M7 may be written in the form 
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Combining (14 )  and (15), and putting the condition M, < 1, we obtain 
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Making use of (1 l), it is easy to show that the condition ( 1 6 )  can be put in the form 

7T < [*(y+ 1)]7'7-1. 

As the right-hand side is just equal to the critical pressure ratio, the analysis is 
valid for M;: d 1 only. 

( b )  Supersonic j e t  
As has been seen above, the simplified model used SO far is applicable to subsonic 
jets only. For correctly expanded supersonic jets, a new approach, based on some 
of the theoretical results obtained for the subsonic jet and on experimental 
evidence, will be followed. The case of a correctly expanded supersonic jet has 
already been studied by Thompson (1964). According t o  him, there was always a 
shock standing in front of the mouth of the resonance tube in his experiments. 
This means that although the jet was supersonic, the flow inside the tube was 
fully subsonic. Experimental evidence indicates that the wake-producing 
cylinder enables a penetration of the tube a t  supersonic velocities. As may be 
seen on figure 7, plate 1, which is a picture taken from a high speed motion 
picture (2000 frames/s), no shock appears in front of the tube and the Mach lines 
remain visible at  the very entrance of the tube. Hence, as was the case for sub- 
sonic jets, the jet appears to be fully swallowed by the tube. This means that 
when the limit cycle is reached, the pressure behind the incident shock must 
just be equal to the surrounding pressure. This experimental fact will form the 
basis of the model proposed for supersonic jets. However, instead of considering 
isentropic waves as was done for the subsonic jet, shock relations will be used 
for the incident and reflected shocks, since the shock irreversibilities may no 
longer be neglected. The pressure ratios for the incident and reflected shocks are 
(Oertel 1966), 

(17 )  
1 +f - PI _ -  

P2" ( 2  +f )M2:1' 

where f is the number of degree of freedom or .f = 2 / (y -  1 ) .  The shock Mach 
number Ms is relatcd to M2 by 

M -  f(Mf- 1 )  
2 -  ( M f + f ) t [ p + f ) M i - l ] :  ( 1 9 )  

Moreover, for supersonic entrance, M, is related to the jet Mach number Mj by 

M2 = My1 ++(y- l)M5]4afr. (20) 

It is therefore possible to express pl/pz0 and p5/p2, as functions of Mj with CI as a 
parameter. 

As mentioned above, the schlieren pictures indicate that no shock is standing 
a t  the entrance of the tube. There are two further pieces of experimental evidence 
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that this is the case. If there were a shock standing in front of the tube mouth, the 
flow would be subsonic downstream of this shock and equations (12) and (13) 
can be used by taking the values of Mj and p2 ,  downstream of it. On figure 8, the 
theoretical values obtained for supersonic and subsonic entrance are compared 
with the experimental ones obtained at  Mi = 1.65 and 2. The parameter a has 
been taken equal to 1, which corresponds to the present experimental conditions. 
It is seen that the experimental values lie closer to the theoretical value obtained 
for supersonic entrance. 

I 
I 

I 

0.5 1 .o 1:5 2.0 2.5 

Mj 

FIGURE 8. Amplitude of pressure fluctuations a t  the end wall of a resonance tube (with 
a = 1).  Curve: (a ) ,  subsonic jet; ( b ) ,  supersonic jet with supersonic entrance into the 
tube; (c), supersonic jet with subsonic entrance (standing shock in front of the tube 
mouth). 

More experimental evidence of supersonic entrance is the ratio of the reflected 
shock speed to the incident shock speed. Expressed in terms of the incident shock 
Mach number M, this ratio is equal to (Oertel 1966) 

u,.s.w. - 2(Y - 1)M: + (3  - Y) -- 
ui. s. w. (7 + 1)M: 

For M ,  = 1, that is for sound waves, this ratio is equal to 1. But as M, increases, 
the ratio decreases since the incident shock velocity is higher than the reflected 
shock velocity in the laboratory co-ordinates. It should be noted that the ratio is 
independent of the sound speed of the gas. Hence, it is insensitive to the thermal 
effects that may occur in the tube. 

It is possible to express M, as a function of Mj for the cases of supersonic and 
subsonic entrance. One may then express the speed ratio as a function of Mj for 
the two cases. The result of this computation is given in figure 9 and is compared 
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with the experimental values obtained for M3 = 1.65 and 2. As may be seen the 
experimental values lie much closer to the theoretical value obtained for super- 
sonic entrance. 

6 1.8 2.0 2.2 

Mj 

FIGURE 9. Ratio of reflected shock velocity to incident shock velocity. Curve: (a ) ,  super- 
sonic entrance into the tube (standing shock) ; (b ) ,  supersonic jet with supersonic entrance 
into the tube. 

4. Experiments 
TWO interesting results of the theoretical analysis of the limit cycle are that the 

minimum pressure of the cycle is below the surrounding pressure and that the 
maximum pressure is above the stagnation pressure of the jet. It is difficult to 
verify these facts experimentally in a resonance tube working with gas. Indeed, to 
measure the pressure fluctuation in that case, use is made of piezo quartz and the 
drift of electronic circuits does not allow a precise measurement of the absolute 
pressure level. Therefore, experiments have first been carried out on the hydraulic 
analogue of the resonance tube and the experimental results have confirmed the 
two theoretical predictions mentioned above (Brocher & Maresca 1969b ; Brocher, 
Maresca & Husson 1969). 

Experiments have then been carried out with the resonance tube itself. 
Figure 10 represents the experimental set up. The resonance tube is of prismatic 
form. In all experiments reported here, the cross-sectional area of the nozzle 
exit and of the resonance tube are equal (36 mm x 36 mm). A thin rod is placed 
on the axis of the jet nozzle so as to produce the desired pressure distribution in 
the jet. For the subsonic velocities, the distance separating the nozzle exit and the 
tube entrance is equal to the tube width (36mm). For the supersonic case, this 
distance is double. Pressure fluctuations have been measured at  three locations 
along the resonance tube: near the mouth, in the middle and at the end wall. The 
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pressure transducer mounted on the end wall is a Kistler 701 A and the two others 
are of capacitive type (Dumitrescu 1967). Figure 11 represents two typical 
records of pressure fluctuations registered on an oscilloscope Tektronix RM 564. 
One of the hypotheses of the theory is that the wave bundles are replaced by single 
waves. The corresponding pressure profile would then consist of pressure steps 

.$ f f ~ ~ ~ ~ ~ J  C 

2500 c 1250 

FIGURE 10. Experimental set up. C ,  compressor; B, high pressure bottles; E.P. ,  electro- 
valve; T.C., tranquilization chamber; D, diaphragm; V,, V,, valves; N ,  nozzle; R.T., 
resonance tube. Dimensions in (mm). 

followed by constant pressure intervals. As may be seen from the records, this is 
only a very crude picture of the pressure fluctuations. Although the shocks are 
quite well formed, the expansion waves, as could be expected, give a continuously 
decreasing pressure. Still, for the subsonic jet velocities, the arrival of the reflected 
expansion wave may be seen on the trace corresponding to the middle ofthe tube. 
At the same location, for supersonic jet velocities, there is a remarkably constant 
pressure between the arrival of the incident compression wave and its reflexion. 
At the end wall, for subsonic and supersonic jet velocities, the incident shock and 
its reflexion are followed by a gradual compression. Near the mouth of the 
resonance tube, the pressure is more constant in the subsonic than in the super- 
sonic case; but, in both cases, the arrival of the reflected shock gives a very sharp 
pressure step. 

The measured pressure amplitude is plotted in figure 8 and compared with the 
theoretical predictions of 0 3. The agreement is seen to be good over all the range 
of Mach number tested. 

For low jet Mach numbers, the linearized theory (Broeher & Maresca 19693) 
indicates that the resonance frequency v is independent of Mj and is equal to the 
acoustic frequency vo = aJ4L of the tube, that is 

v = vo{i +o(H;j}. 
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50 

45 

atmldiv. 

atmldiv. 

- 2 msidiv. 

- 2 ms/div. 

FIGURE 11. Pressure fluctuations at  variouslocations in the resonance tube. (a )  M ,  = 0.8; 
( b )  Mi = 2. Upper trace, end wall; middle trace, half tube length; lower trace, 20mm 
downstream of the tube mouth. 

1 .o 

P 
\ > 

0.5 

0 

Linearized theory: v/ 

-o-o--o--o-ooo-3-o-Q i ’  

0.5 1-0 1.5 2.0 

Mj 

FIGURE 12. Variation of resonance frequency v with jet Ma.ch nurnbcr. v,, = acoustic 
frequency of tube. 0, cxpcrimentnl points. 
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The ratio v/vo is plotted on figure 12. It is seen that the result of the linearized 
theory is excellently verified for Hj < 1.  For Mj > 1, the frequency decreases 
slightly. 

5. Conclusions 
The fluid dynamics of the resonance tube has been explained with the help of a 

simplified model. It has been shown how the oscillations start and grow to a 
finite amplitude. This amplitude increases with the jet Mach number and is 
predicted by the theory over a wide range of jet Mach numbers (0.1 to 2). It has 
been experimentally demonstrated that the ' wake-producing ' cylinder laid along 
the jet axis, proposed by Brocher & Maresca (1969a, b )  for subsonic jets, also 
allows the full oscillation amplitude to be achieved in the case of a correctly 
expanded supersonic jet. The jet enters the tube at supersonic velocity in the 
compression phase of the cycle, without noticeable spilling. 

Further work is presently being done by the authors on a digital computer to 
study the flow field in more detail. Also the thermal effects are being investigated 
in the light of the now well established flow model. 

The authors wish to thank the Director of the Institut de MBcanique des 
Fluides de Marseille, Professeur J. Valensi, for his constant encouragements 
and the permission to publish this paper. Thanks are also due to Mr Issartier and 
Mr Guillaume of the I.M.F.M. for their advices on experimental techniques 
and to Professor Dumitrescu of Institut de MBcanique des Fluides Traian Vuia, 
of the Academie de la RBpublique Socialiste de Roumanie, Bucharest, who pro- 
vided the authors with the capacitive transducers of his own design. 

Appendix 
It has to be shown that the series of points given by the intersection of the 

compression waves having a slope + 1 with the ellipse E2 tends to the limiting 
point 2. 

Considering a continuous single-valued function y = f(x), monotonically 
decreasing and without inflexion point, as is ellipse E2 in the first quadrant, it is 
easy to show that two following points of the series are connected by the relation 

Yn+l+ Yn = %+1- x,. (A11 
It follows that: 

(a) If yn = 0, X,+~-X: ,  = 0 since f(x) is decreasing monotonically. This 
implies yntl = 0 and in that case the limit cycle is reached. 

( b )  If y, > 0, (x,+~ - x,) > 0 since f(x) is decreasing monotonically and single- 
valued. This implies 

(c) If yn < 0,  (A 1) may be written as yn+l- Jynl = X,+~-X,. Since f ( x )  is 
decreasing monotonically and single-valued, x,+~ < x, and ynfl < Iy,n(, or 

< y,, or I Y , + ~ ~  < Iynl. 

IYn+ll < IYnl. 
Hence, the cases ( b )  and (c) may be summarized as Iyn+ll < Iynl. 
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It remains to show that lim I ynl --f 0. Starting from the first cycle, one has 

Y1 = Xl, 

YZfYl = Xz-X1, 

Yn+l+Yn = xn+l-Xn. 

n-m 

Summing up both sides of these equations, one gets 

This may be written as 

Since the right-hand side of (A 2) is finite, either the terms of both series tend 
to zero as n-+co, or they both tend to a limit different from zero. The absolute 
value of these two limits would be equal since, as has been shown, I yn+ll < lynl ; 
this would imply (x,+~ - zn) -+ 0 and, as was discusssed above, this is not possible 
since the x axis is not an axis of symmetry for the ellipse Ez. Hence, the terms of 
the two sums may only tend to zero as n+co and this demonstrates that the 
oscillations will grow up with time and reach the limit cycle 1-2-3-4-1. 
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FIGURE 7. Resonance tube excited by a correctly expanded supersonic jet ( M j  = 2 ) ,  with 
the ' wake-producing ' rod. (a)  First phase : supersonic penetration of the jet into the tube. 
( b )  Second phase: evacuation of the tube. 
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